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Abstract. We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify
the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock
prices in the Bombay Stock Exchange for the three-year period 2000–2002. Random matrix analysis is then
applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns
of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of
matrix C of correlations between price fluctuations in time regimes characterized by different volatilities.
Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility
of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding
to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this
eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C
can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with
the volatility of the overall market index.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.65.-s Social
and economic systems – 89.75.-k Complex systems

1 Introduction

Physical phenomena such as Brownian motion, turbu-
lence, chaos, have recently found application in the study
of dynamics of financial markets [1–3]. An important ques-
tion of interest is whether and how volatility (a measure
of the market fluctuations) affects the response of mar-
ket dynamics and vice versa. It has been observed [4–8]
that there is an accentuated rise in the overall stock index
correlations during a financial crisis. Empirical relations
between volatility and information exchange (news) have
also been established in recent studies [9]. In this paper,
we explore the relationship between two a priori distinct
properties of the market, one, volatility an index of mar-
ket fluctuations, and two, the coupling of stocks with one
another captured by the correlation matrix. While there
already exists evidence that both fluctuation and correla-
tion are enhanced at the same time, we attempt here to
explore this relationship systematically and quantitatively
for the Indian Stock market.

A number of researchers [10–20] have applied the
methods of Random Matrix Theory (RMT) to finan-
cial data and found interesting clues about the underly-
ing interactions. However, while the regression methodol-
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ogy [21,22] has focussed keenly on prediction and finding
potential indicators of volatility, RMT has been applied
little in that area. The purpose of this paper is two-fold.
First, it attempts to understand empirically the closely
related aspects of volatility and correlation in the market
using RMT. Second, it aims to show that this technique
may be used to set up a quantitative indicator which can
potentially serve as a measure of correlations of the mar-
ket.

The paper is organized as follows. Section 2 provides
a brief empirical analysis of the Bombay Stock Exchange
(BSE) index and shows the volatility pattern. Trends are
identified on the basis of some commonly observed fea-
tures of volatile versus non-volatile situations. Section 3
deals with the random matrix approach and the financial
correlation matrix. Section 4 concludes with a discussion
of the key observations.

2 Empirical analysis of the Indian stock
market BSE index

2.1 Data analyzed

This section uses the daily indices of the Bombay Stock
Exchange for a period of 3 years between 2000–2002. Each
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year corresponds to approximately 250 days of elapsed
time and the total number of data points in this set is 750.
We consider the opening values of indices to be continuous
by removing the holidays.

BSE SENSEX: The BSE-Sensitive Index, (or SEN-
SEX) is a “market capitalization-weighted” index of
30 stocks representing a sample of large, liquid and repre-
sentative companies. In particular, the selection of these
stocks is based on certain technical specifications [23] of
criteria such as liquidity, continuity, industry representa-
tion, market capitalization, track record, etc. The value of
the index at any point reflects the effective market value
of 30 component stocks relative to a base period. The to-
tal market value of the stocks in the index is set equal to
100. BSE-SENSEX is the oldest index in India and is in
effect the proxy for the Indian stock markets.

2.2 Volatility

Our present focus is on linking volatility to correlations
in BSE. Hence, it would be worthwhile to understand the
volatility pattern of BSE based on the above assertions,
before moving to the random matrix treatment.

2.2.1 Computing volatility:

We consider Y (t−∆t), Y (t), Y (t+∆t), . . . to be a stochas-
tic process. Y (t) may represent time series of prices, in-
dices, exchange rates etc. The logarithmic returns G(t)
over time scale ∆t are

G(t) = log(Y (t + ∆t)) − log(Y (t)), (2.1)

∆t refers to the time interval. Here ∆t = 1 day.
We quantify volatility, as the local average of the ab-

solute value of daily returns of indices in an appropriate
time window of T days,

v =

T−1∑

t=1

|G(t)|

T − 1
. (2.2)

We compute volatility for the three year period 2000−2002
by taking T = 20 days, that is typically a month of trading
time in BSE. This method comes close to the computation
of historical volatility in literature. The results here are for
small time periods though the best estimation of volatility
involves use of larger time periods. Alternative estimators
have been introduced in different contexts [24].

The BSE index for the period 2000–2002, is shown
in Figure 1. The figure shows a significant change in the
value of index over the period of three years 2000–2002.
The rate of change (decrease) appears to be higher for
the first 450 days than later. It seems the market was far
more active in the year 2000 than 2001 or 2002. There is
a sharp dip in Y near 425th point in the data set, after
which the index rises and settles without much fluctua-
tion. This point represents the day 9/11/2001. The event

Fig. 1. BSE index plotted for all the days reported in the
period 2000–2002. Total number of points plotted is 750. A
sharp dip can be seen around September 11th, 2001 (425th
day in figure) when the index drops to the lowest.

that occurred on this day in the USA had a rattling ef-
fect on markets worldwide.

∑ |G(t)| may be considered a
substitute for volatility and we refer to it as the ‘scaled
volatility’.

Figure 2 shows the volatility of the market in the pe-
riod 2000–2002. Each year corresponds to 250 days of
elapsed time. We may divide the period into three sub-
periods:
T1: 1–250 days, year 2000 (scaled volatility = 5.65),
T2: 251–500 days, year 2001 (scaled volatility = 3.5) and
T3: 501–750 days, year 2002 (scaled volatility = 2.25).

We observe that T1 (the year 2000) was an extremely
active subperiod marked by very high fluctuations in the
market. Also, regimes of high volatility seem to occur
in clusters. Fluctuations are consistently high in say the
first 200 days and more. Subsequently they decrease in T2

(year 2001). The sudden rise observed around the 425th
day indicates the effect of the 9/11/2001 event. However
its impact on the market was not long lasting and a qui-
escent state T3, followed soon after.

3 Random matrix approach

Random Matrix Theory, developed originally [25] to study
the interactions in complex quantum systems has been
useful in the analysis of universal and non-universal prop-
erties of cross-correlations between different stocks. Re-
cently various studies [10–20] have quantified correlations
between different stocks by applying concepts and meth-
ods of RMT. They have shown that deviations of the
properties of correlation matrix of stock-price fluctuations,
from a random correlation matrix yield information about
the actual correlations existing in the market. Here we
compare volatile versus less volatile situations from the
point of view of correlations, participation of stocks in the
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Fig. 2. Volatility, v of BSE index for 20-day periods between 2000–2002. Last ten days of the period have been ignored. The
period 420–440 days including the date of September 11th 2001 shows a sudden burst of activity.

market and try to quantify volatility in terms of the devi-
ations.

3.1 Description of data used for the correlation
analysis

As mentioned earlier, BSE consists of stocks from various
sectors. Many of the stocks are not actively traded and
hence not reported regularly in any period of time. Con-
sequently they do not contribute much to the variations in
stock price indices. We consider here seventy stocks from
largest sectors such as chemical industry, metal and non-
metal (diversified including steel, aluminum, cement etc)
whose data exists for the full period under consideration1.
Analysis is done for the period 280–500 days, a subpe-
riod in the year 2001. The data set studied here is that
of intra day prices of seventy stocks of BSE which should
be distinguished from the previous data set analyzed in
Section 2, the index of 30 stocks of BSE-SENSEX.

3.2 Cross correlations

In terms of the price of stock i at time t, Pi(t) (i =
1, 2, . . . , N , t = 1, 2, . . . , T ) we quantify correlations for
T − 1 observations of inter day price changes (returns) as

Gi(t) = log Pi(t + 1) − log Pi(t). (3.3)

Since different stocks vary on different scales, we normalize
the returns as

Mi(t) =
Gi(t) − 〈Gi〉

σi
(3.4)

where σi =
√〈G2

i 〉 − 〈Gi〉2 is the standard deviation of
Gi and 〈Gi〉 = 1

T−1

∑T−1
t=1 Gi(t). Then the cross correla-

tion matrix C, measuring the correlations of N stocks is
1 Questions regarding the data may be addressed to the au-

thors at kulkarni@stat.wisc.edu/ndeo@physics.du.ac.in.

Fig. 3. Plot of the probability density of elements of corre-
lation matrix C calculated using daily returns of 70 stocks
for two 85 day analysis periods (i) 280–365 days and (ii)
340–425 days with scaled volatilities (computed as

∑ |G(t)|)
of 1.6 and 0.82 respectively. We find a large value of aver-
age magnitude of correlation 〈|C|〉 = 0.22 for (i) compared to
〈|C|〉 = 0.14 for (ii).

constructed with elements

Cij = 〈Mi(t)Mj(t)〉. (3.5)

The elements of C lie between −1 ≤ Cij ≤ 1 where
Cij = 1 corresponds to complete correlation, Cij = 0 cor-
responds to no correlation and Cij = −1 corresponds to
complete anti-correlation.

We construct the cross correlation matrix C from
daily returns of N = 70 stocks for two analysis periods
of 85 days each, Ta: 280–365 days with scaled volatility∑ |G(t)| = 1.6 and Tb: 340–425 days with scaled volatil-
ity

∑ |G(t)| = 0.82) (see Fig. 2). The probability densities
of elements of C, P (Cij) for both periods are compared
in Figure 3. We see that the distribution for period Tb is
more symmetric, implying that both positive and negative
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Fig. 4. Probability density of eigenvalues is shown by bars for a period considered (i) 334–419 before 9/11/2001 and having a
volatility (scaled) of 0.8 (Left) and (ii) 346–431 including 9/11/2001 and having a volatility (scaled) of 0.9 (Right). A comparison
is made with the probability density of eigenvalues of a random matrix R of the same size as C, shown by the solid line. The
number of deviating eigenvalues is 4 in (i) and 6 in (ii). Largest eigenvalue for (i) is 9.17 and for (ii) is 10.28.

correlations are more or less equal in extent. Ta, however is
characterized by a larger, positive mean. The figure also
suggests that there is a lower value of P (Cij) in higher
levels of correlation magnitudes in the less volatile period
Tb as compared to the more volatile period Ta. The exis-
tence of more pronounced correlations in periods of high
volatility is indicated in Figure 5. The simple Pearson’s
correlation coefficient [26] between the 〈|C|〉 and volatil-
ity is found to be 0.94 which is highly significant.

3.3 Statistics of eigenvalues of C

The eigenvalues of C have special implications in identi-
fying the nature of the correlations. In the past, studies
using RMT methods have analyzed C and shown that 98%
of eigenvalues of C lie within the RMT limits whereas 2%
of them lie outside [10]. It is known that the largest eigen-
value deviating from RMT prediction reflects that some
influence of the full market is common to all stocks, and
that it yields information about the actual correlations in
the market. The next few sub-leading eigenvalues carry
information regarding the market sectors. The range of
eigenvalues within the RMT bounds corresponds to noise
and does not yield any system specific information.

3.3.1 Eigenvalue distribution of the correlation matrix

In order to extract information about the cross correla-
tions from the matrix C, we compare the properties of C
with those of a random correlation matrix. We now define
a random correlation matrix as

R =
AA�

T
(3.6)

where A is N × T matrix with random entries (zero
mean and unit variance) that are mutually uncorrelated.

Statistics of random matrices such as R are known. In
the limit of both N and T tending to infinity, such that
Q = T/N(> 1) is fixed, it has been shown that the proba-
bility density function Prm (λ) of eigenvalues of R is given
by [14,15]

Prm(λ) =
Q

√
(λ+ − λ)(λ − λ−)

2πλ
(3.7)

for λ lying in λ− < λ < λ+ where λ− and λ+ are the
minimum and maximum eigenvalues of R, respectively
given by

λ± = 1 +
1
Q

± 2
√

1
Q

. (3.8)

We set up two correlation matrices C from the daily re-
turns of N = 70 stocks for T = 85 days for two time peri-
ods in the year 2001. The periods are chosen so that one
of them includes the data reported on the day - Septem-
ber 11, 2001 (85th day being September 18, 2001) and
the other one does not (85th day being August 31, 2001).
Here Q = 1.21, and maximum and minimum eigenvalues
predicted by RMT from (3.8) are 3.6385 and 0.0086. See
Figure 4.

Figure 4 indicates an increased deviation in case of
a perturbed correlation matrix (including the shock of
9/11/01), Figure 4 (ii), as compared to a non-perturbed
one (excluding the shock of 9/11/01), Figure 4 (i). The de-
viation is observed in terms of the number of eigenvalues
lying outside RMT range and the magnitude of the maxi-
mum eigenvalue. In the case of non-perturbed correlation
matrix, 4 eigen-values lie outside RMT bounds; 2 larger
than λ+ and 2 smaller than λ−. The largest eigenvalue
is 9.17. Whereas, in the case of a perturbed correlation
matrix, we find 6 eigen-values deviating from RMT lim-
its; 3 larger than λ+ and 3 smaller than λ−. The largest
eigenvalue is 10.28.
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Fig. 5. Variation of largest eigenvalue and 〈|C|〉, with the
time shift, j. Time shift j increases in steps of 2 days each
time to span a total time of 280–500 days (see Fig. 2).
Volatility has been scaled (as

∑ |G|) for convenience.
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Fig. 6. Variation of largest eigen-
value with the time shift, j. Time
shift j increases in steps of 1 day
each time to span a total time of
333–444 days, in order to capture
the impact of the 9/11 shock (see
Fig. 2). The horizontal axis repre-
sents the last calendar day of all the
time periods.

Of course the difference observed in the magnitude of
the maximum eigenvalue in the two cases is consistent
with intuition because large changes in correlations oc-
cur during market shocks. What may seem surprising is
that an additional eigenvalue emerges from the RMT noise
band in the second case. However the emergence of this
eigenvalue is accompanied by a concentration of eigenval-
ues around the peak of the distribution, suggesting more
systematic synchronization during this time. This observa-
tion is in agreement with the results for other markets [27].

3.3.2 Trend of largest eigenvalue

Since the largest eigenvalue represents collective informa-
tion about the correlations between stocks, we expect its
trend to be dependent on the market conditions. To see
this we set up C using daily returns of N = 70 stocks
for fixed time periods of length T = 85 days, progressing
from quiescent (no-shock) periods to the ones hit by the
shock. The trace of the correlation matrix is a constant
throughout, Tr(C) = N . The closer the maximum eigen-

value is to the trace, the more information it contains and
the more correlated the prices would be. Variation of the
largest eigenvalue is seen by advancing the time window
each time by two days. Labelling the first and last day of
all periods as tf and tl respectively, we set up C as

C(tf , tl) = C(280 + j, 280 + j + 85) (3.9)

where j = 0, 2, 4, 6, . . . , 134 denotes the time shift.
The trend of the largest eigenvalue is shown in Fig-

ure 5. We observe a decrease in its magnitude for the time
periods between 280–425 days after which it is more or
less constant. It is found to be strongly correlated with
the volatility of the BSE index (the simple correlation co-
efficient is found to be 0.94). In order to capture the im-
pact of 9/11/2001 shock, we carry out a similar exercise,
taking j = 0, 1, 2, 3, . . . , 26. The aftermath of the event
can be seen in Figure 6 by the sudden, impulsive rise in
the maximum eigenvalue around September 13th, 18th,
2001. The impact was localized in time. Other deviating
eigenvalues are also of significance in this context and this
analysis may be applied to study their patterns.
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3.4 The eigenvector corresponding to the largest
eigenvalue and the correlation index

The general conclusion of some of the earlier
work [10–13,20] is that the eigenvectors of C corre-
sponding to eigenvalues deviating from RMT predictions
bring out the collective response of the market to per-
turbations. In this section we see how the collective
motion of all the stocks can be interpreted in terms of
volatile versus non-volatile market conditions. In the
following two subsections (3.4.1 and 3.4.2), we see that
the degree of such synchronization is indicated by the
eigenvector corresponding to the largest eigenvalue (the
last eigenvector) through the evolution of its structure
and components. Finally in (3.4.3), we try to quantify
volatility in terms of the eigenvector corresponding to
the largest eigenvalue to yield a strong indicator of
correlation, the Correlation Index.

3.4.1 Distribution of eigenvector components

We study and compare the distributions of the compo-
nents of the eigenvectors corresponding to largest eigen-
values for three time periods characterized by different
volatilities (i) Ta: 280–365 days, volatility = 1.6, (ii) Tb:
340–425 days, volatility = 0.82 and (iii) Tc: 380–465 days,
volatility = 0.99.

Figure 7 shows that the distributions of components
of U70, the eigenvector corresponding to the largest eigen-
value, are smaller and broader in the less volatile regimes
(Tb and Tc) than in the more volatile regime Ta. Although
the maximum contribution is found to be higher in distri-
butions for Tb and Tc, the number of significant contribu-
tions (identified as components differing significantly from
zero) is far lower than that in the period Ta; in fact it is
half as much. (This is dealt with in the next subsection.)
In addition, all the components of U70 in the period Ta

have a positive sign, which confines the distribution to one
side. This finding has been interpreted previously [10] to
imply that there is a common component of the significant
contributions of U70 that affects all of them with a similar
bias. This means that the market forces at the time drive
all the stocks in the same direction. For instance, in the
event of a newsbreak, all the stocks would correlate and
hence the collective contribution to the market would be
high. However the periods Tb, Tc and all those following in
succession (whose distributions have not been shown here)
are relatively quiescent. The components of U70 in these
time periods are found to be both positive and negative. It
shows that the market conditions are not strong enough to
drive the stocks in the ensemble together. This suggests
an interesting link between the strength of the common
influence and volatility. A collective or ensemble-like be-
havior seems to be more pertinent to volatile situations
rather than non-volatile ones.

3.4.2 Inverse Participation Ratio

We analyze the evolution of the structure of the last eigen-
state, U70 by evaluating the Inverse Participation Ratio.

Fig. 7. Probability density of the eigenvector components for
the largest eigenvalue for three periods (i) 280–365 days (ii)
340–425 and (iii) 380–465 days marked by volatilities 1.6, 0.82,
0.99 respectively. The plots are for C constructed from daily
returns of 70 stocks for T = 85 days.

The IPR quantifies the contribution of different compo-
nents of eigenvector to the magnitude of an eigenvector.
We define νik, i = 1, 2, . . . , N to be the components of
eigenvector Uk. The IPR is given by

Ik =
N∑

i=1

ν4
ik. (3.10)

Since IPR is the reciprocal of the number of eigenvec-
tor components that contribute significantly, if all com-
ponents contribute identically, νik = 1/

√
N then Ik =

1/N . As before we set up a correlation matrix C with
N = 70 stocks for T = 85 days, each time shifting the
time window forward in steps of 2 i.e. j = 0, 2, 4, . . . , 134
spanning a period of 280–500 days as before. The pattern
of IPR (Fig. 8) indicates that the number of significant
participants in U70 decreases as we advance to less volatile
periods. The IPR is closest to 0.0143 (=1/70), the value
we would expect when all components contribute equally,
in the most volatile periods of the time span. The values
of IPR deviate more and more from 0.0143 as we move to
the less volatile periods. In fact the correlation between
IPR and volatility was found to be equal to −0.63.

3.4.3 Correlation Index

Another interesting feature brought out in the analy-
sis of eigenvectors is the large-scale correlated move-
ments associated with the eigenvector corresponding to
the largest eigenvalue. The average magnitude of corre-
lations of prices of every stock m with all stocks n =
1, 2, . . . , N is 〈|C|〉m = 1

(N−1)

∑N
k=1 |Cmk|, when m �= k.

Variation of 〈|C|〉m for m = 1, 2, . . . , N with the corre-
sponding components of U70 shows (Fig. 9) a strong linear
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Fig. 8. Inverse participation ratio (IPR) for the eigenvector
U70 as a function of time. Results have been obtained from cor-
relation matrix C constructed from daily returns of 70 stocks
for 68 time windows of 85 days each, progressed each time
by 2 days spanning a time of 280–500 days. The solid line
marks the value 0.0143 of IPR when all components contribute
equally.

Fig. 9. Plot of the components of the eigenvector U70 corre-
sponding to the largest eigenvalue with the extent to which
every individual stock is correlated in the market, denoted
by 〈|C|〉m. In this case, the correlation matrix C was con-
structed using daily returns of 70 stocks for the period
280–365 days. The line obtained by least square fitting has
a slope = 0.68 ± 0.01.

positive relationship between the two at all times. How-
ever its variation with U2, an eigenvector lying within the
RMT range, shows almost zero dependence (Fig. 10). In
this final sub-section we make use of this dependence to
set up a Correlation Index, which is strongly related to
the correlation of the BSE index.

We define a projection vector S with elements Sm =
〈|C|〉m where m = 1, 2, . . . , 70, as calculated before. We

Fig. 10. Plot of the components of eigenvector U2 associated
with an eigenvalue from the bulk of RMT, λ2. The variation
shows no significant dependence between the two. The picture
is quite the same for successive time periods considered.

obtain a quantity Xm(t) by multiplying each element Sm

by the square of the corresponding component of U70 (in
analogy with the probability of the component of the
eigenvector in quantum mechanics) for each time win-
dow t,

Xm(t) = (U70
m )2Sm, m = 1, 2, . . . , 70. (3.11)

The idea is to weight the average correlation possessed by
every stock m in the market according to the contribu-
tion of the corresponding component to the last eigenvec-
tor U70, thereby neglecting the contribution of less sig-
nificant participants (the ones negligible in magnitude) in
U70. The quantity X in some sense represents the effective
magnitude of correlations of stocks. Inclusion of other de-
viating components could also be useful in explaining the
variation.

The sum of the correlation magnitudes is obtained as

CI(t) =
70∑

m=1

Xm(t), at time t (3.12)

and may be expected to reflect the correlation of the mar-
ket at that time. We call it the Correlation Index (CI).
We note from Figure 11 that the Correlation Index be-
haves remarkably similar to the volatility of BSE index as
the time window is slid forward. A highly statistically sig-
nificant coefficient of correlation of 0.95 is obtained and,
a positive linear relationship between the two can be seen
in the plot of CI and BSE index volatility set out in Fig-
ure 12. A coefficient of correlation of 0.98 is found between
the largest eigenvalue and CI. From its definition the cor-
relation index is a more direct measure of correlation be-
tween stocks than the largest eigenvalue. We thus find
the relevance of the last eigen-vector in quantifying the
volatility of the overall market. Similar procedures have
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Fig. 11. Temporal evolution of the correlation index, CI
(scaled by a factor of ∼6) and the scaled volatility (computed
as

∑ |G(t)|) of the BSE index. The results are obtained from
the correlation matrix C constructed from daily returns of
70 stocks for 68 progressing time windows of 85 days each.
The time shift increases in steps of 2 days each time and is
represented by the horizontal axis.

Fig. 12. The correlation index, CI with the volatility of BSE
index approximates a linear fit with slope = 0.97 ± 0.04

been carried out in other studies [11] in different contexts
to verify the relevance of this last eigenvector.

A similar study may also be done based on the Factor
analysis. The one-factor model [28] postulates that X is
linearly dependent on a factor F1 as Xm = l1mF1 where
l1m is the factor loading of the mth component on F1.
In this set up, (U70

m )2 may be viewed as the loading on
Sm, the participation factor. However further analysis is
required to be able to establish the relevance of the one
factor model to the procedure outlined in the present con-
text. The correlation index, proposed here, is related to

the regression coefficients βm in the standard one-factor
model [16], roughly as CI(t) ≈ ∑

m(β3
m + . . .).

The conditions involved in the constructions of the cor-
relation index and the BSE index are quite different. The
correlation index uses only the prices, whereas the BSE in-
dex is a composite index defined by the set of variables –
price and number of shares [23]. It is based on the idea
that the total of the magnitudes of stock-price correla-
tions (weighted according to their participation in U70) is
a good measure of the correlation between stocks. The fact
that the correlation index indicates the level of volatility
in the market at any time is remarkable.

4 Conclusion

In this paper we study the volatility of the Bombay Stock
Exchange in India using the RMT approach. We find that
the deviations from RMT bounds are more pronounced in
volatile time periods as compared to the not so volatile
ones for the Bombay Stock Exchange. The largest eigen-
value, which is in some sense an index of information con-
tained in the entire market, is seen to be highly sensitive
to the trends of market activity. A comparison of eigen-
value distributions for two analysis periods before and af-
ter the event on 9/11/2001, show that not only the number
of eigen-values deviating from RMT bounds but also the
magnitude of the maximum eigenvalue increase after the
event. The simple correlation coefficient between λmax
and BSE volatility is 0.94. Analysis of the correlation
matrix C as a function of time reveals a strong depen-
dence between the average of magnitude of elements of C
and volatility, indicating highly synchronous movements
of stocks in highly fluctuating times or vice versa. A highly
significant correlation coefficient of 0.94 is observed here
as well.

The eigenvector associated with the largest eigenvalue,
the last eigenvector of C has been enunciated in previ-
ous studies as the collective response of the whole market
to certain bursts of activity. We have tried to explore its
role in quantifying the fluctuations. It has been shown in
Plerou et al. [10] that if all the components of the eigen-
vector have the same sign then there is some common
component of the significant participants that affects all
of them with similar bias. The probability density patterns
of the components of U70, found here, shows that while
the distribution in period Ta is confined to the positive
values of participation, the distributions in the other two
periods (Tb and Tc), have spread to the negative side as
well, indicating a gradual decrease of a common influence
on the components as we move from a more volatile period
Ta to less volatile periods Tb, Tc. Hence our finding here
may suggest that ensemble-like behavior is more promi-
nent in volatile situations than non-volatile ones. Further,
the number of significant participants in Tb,Tc drops to al-
most half that in Ta, a finding better demonstrated by the
time evolution of the inverse participation ratio for compo-
nents of U70. A strong anti-correlation between IPR and
volatility (= −0.63) confirms the existence of a positive
association between the number of significant participants
in U70 with the volatility.
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It is verified that the eigenvector U70 indicates the ex-
tent to which the stock movements are synchronized. We
find a positive, linear relationship between the extent to
which all individual stocks correlate or anti-correlate in
the market (〈|C|〉m, m = 1, 2, . . . , N) and the correspond-
ing elements of U70. Finally we investigate how this may
lead to a quantification of the correlation of the market by
taking the product of 〈|C|〉m with squares of correspond-
ing elements of U70. The products for all components may
be put together as a sum to obtain a Correlation Index,
CI. It is quantified as the sum of correlations of individ-
ual stocks, each weighted according to its participation in
U70. Temporal evolution of CI and BSE index volatility,
have identical trends and there exists a highly statisti-
cally significant correlation of 0.95 between the two. In
addition we find a close positive linear relationship be-
tween the two. It is noted that the ensemble of 70 stocks
employed in the construction of CI may have no bearing
on the Sensex basket of 30 stocks, the latter being chosen
according to certain technical specifications. Further, the
Correlation Index is based on stock-price correlations and
not the market value of (or number of shares of) these
stocks. However what is interesting is that even though a
priori conditions underlying the constructions of CI and
BSE index are different, the overall patterns of CI and
BSE volatility match very well. We may conclude that the
last eigenvector of the cross correlation matrix can be set
up usefully to obtain a statistically significant indicator for
the correlation of the market at any time. This establishes
that there exists a close relationship between two distinct
properties of the market, correlation and volatility.
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